
Download free eBooks at bookboon.com

Go Faster!

18

Part I: Preliminaries

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

19

“Go Faster!”

1 “Go Faster!”

1.1 Introduction

here’s an old joke, well known in database circles, to the efect that what users really want (and always have wanted, ever

since database systems were irst invented) is for somebody to implement the go faster! command. Well, I’m glad to be

able to tell you that, as of now, somebody inally has ... his book is all about a radically new database implementation

technology, a technology that lets us build database management systems (DBMSs) that are “blindingly fast”—certainly

orders of magnitude faster than any previous system. As explained in the preface, that technology is known as he

TransRelationaltm Model, or the TR model for short (the terms TR technology and, frequently, just TR are also used).

As also explained in the preface, the technology is the subject of a United States patent (U.S. Patent No. 6,009,432, dated

December 28th, 1999), listed as reference [63] in Appendix B at the back of this book; however, that reference is usually

known more speciically as the Initial Patent, because several follow-on patent applications have been applied for at the

time of writing. his book covers material from the Initial Patent and from certain of those follow-on patents as well.

he TR model really is a breakthrough. To say it again, it allows us to build DBMSs that are orders of magnitude faster

than any previous system. And when I say “any previous system,” I don’t just mean previous relational systems. It’s an

unfortunate fact that many people still believe that the fastest relational system will never perform as well as the fastest

nonrelational system. Indeed, it’s exactly that belief that accounts in large part for the continued existence and use of older,

nonrelational systems such as IMS [25,57] and IDMS [14,25], despite the fact that—as is well known—relational systems

are far superior from the point of view of usability, productivity, and the like. However, a relational system implemented

using TR technology should dramatically outperform even the fastest of those older nonrelational systems, inally giving

the lie to those old performance arguments and making them obsolete (not before time, either).

I must also make it clear that I don’t just mean that queries should be faster under TR (despite the traditional emphasis

in relational systems on queries in particular)—updates should be faster as well. Nor do I mean that TR is suitable only

for decision support systems—it’s eminently suitable for transaction processing systems, too (though it’s probably fair to

say that TR is particularly suitable for systems in which read-only operations predominate, such as data warehouse and

data mining systems).

And one last preliminary remark: You’re probably thinking that the performance advantages I’m claiming must surely

come at a cost: perhaps poor usability, or less functionality, or something (there’s no free lunch, right?). Well, I’m pleased

to be able to tell you that such is not the case. he fact is, TR actually provides numerous additional beneits, over and

above the performance beneit—for example, in the areas of database and system administration. hus, I certainly don’t

want you to think that performance is the only argument in favor of TR. We’ll take a look at some of those additional

beneits in Chapters 2 and 15, and elsewhere in passing. (In fact, a detailed summary of all of the TR beneits appears in

Chapter 15, in Section 15.4. You might like to take a quick look at that section right now, just to get an idea of how much

of a breakthrough the TR model truly is.)

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

20

“Go Faster!”

1.2 TR Technology and the Relational Model

As I said in the preface, I believe TR technology is one of the most signiicant advances—quite possibly the most signiicant

advance—in the data management ield since E. F. Codd irst invented the relational model (which is to say, since the late

1960s and early 1970s; see references [5-7], also reference [35]). As I also said in the preface, TR represents among other

things a highly efective way to implement the relational model, as I hope to show in this book. In fact, the TR model—or,

rather, the more general technology of which the TR model is just one speciic but important manifestation—represents an

efective way to implement data management systems of many diferent kinds, including but not limited to the following:

•	 SQL DBMSs •	 Data warehouse systems

•	 Information access tools •	 Data mining tools

•	 Object/relational DBMSs •	 Web search engines

•	 Main-memory DBMSs •	 Temporal DBMSs

•	 Business rule systems •	 Repository managers

•	 XML document storage and retrieval systems •	 Enterprise resource planning tools

as well as relational DBMSs in particular. Informally, we could say we’re talking about a backend technology that’s suitable

for use with many diferent frontends. In planning this book, however, I quickly decided that my principal focus should

be on the application of the technology to implementing the relational model speciically. Here are some of my reasons

for that decision:

LIGS University
based in Hawaii, USA

 ▶ enroll by October 31st, 2014 and

 ▶ save up to 11% on the tuition!

 ▶ pay in 10 installments / 2 years

 ▶ Interactive Online education

 ▶ visit www.ligsuniversity.com to

 ind out more!

is currently enrolling in the

Interactive Online BBA, MBA, MSc,

DBA and PhD programs:

Note: LIGS University is not accredited by any
nationally recognized accrediting agency listed
by the US Secretary of Education.
More info here.

http://bookboon.com/
http://bookboon.com/count/advert/ff2a784e-44d0-4687-80af-a3bc00b4ceb5

Download free eBooks at bookboon.com

Go Faster!

21

“Go Faster!”

•	 Concentrating on one particular application should make the discussions and examples more concrete and

therefore, I hope, easier to follow and understand.

•	 More signiicantly, the relational model is of fundamental importance; it’s rock solid, and it will endure.

Ater all, it really is the best contender, so far as we know, for the role of “proper theoretical foundation” for

the entire data management ield. One hundred years from now, I fully expect database systems still to be

irmly based on Codd’s relational model—even if they’re advertised as “object/relational,” or “temporal,” or

“spatial,” or whatever. See Chapter 15 for further discussion of such matters.

•	 If your work involves data management in any of its aspects, then you should already have at least a nodding

acquaintance with the basic ideas of the relational model. hough I feel bound to add that if that “nodding

acquaintance” is based on a familiarity with SQL speciically, then you might not know as much as you

should about the model as such, and you might know “some things that ain’t so.” I’ll come back to this point

in a few moments.

•	 he relational model is an especially good it with TR ideas; I mean, it’s a very obvious candidate for

implementation using those ideas. Why? Because the relational model is at a uniform, and high, level of

abstraction; it’s concerned purely with what a database system is supposed to look like to the user, and has

absolutely nothing to say about what the system might look like internally. As many people would put it, the

relational model is logical, not physical.

Let me elaborate on this point for a moment. Rather than saying it’s logical, not physical, my own preference—

since the terms “logical” and “physical” aren’t very precisely deined—would just be to say that the relational

model is indeed a model (a data model, that is) and is thus, by deinition, not concerned with implementation

issues. (I’ll have more to say on the diference between model and implementation in the next section.) Anyway,

however you might like to express the fact, it’s certainly the case that the relational model emphasizes, far

more than other data models do, the crucial distinction between diferent levels of the system—in particular,

the distinction between the model or external (user) level and the implementation or internal (system) level.

hat’s why it’s a good it with TR technology. Other data models—for example, the “object model” [3,4] or the

“hierarchic model” [25,57] or the CODASYL “network model” [14,25]—muddy the distinction between those

levels considerably. As a consequence, those other models give implementers far less freedom (far less than

the relational model does, I mean) to adopt inventive or creative approaches to questions of implementation.

Note: I put the terms “object model,” “hierarchic model,” and “network model” in quotation marks in the foregoing

paragraph because there’s considerable doubt as to whether those “models” are truly models at all, at least in

the sense that the relational model is a model (see, for example, references [28] and [29] for further discussion

of this point). Certainly most of those other “models” are quite ad hoc, instead of being irmly founded, as the

relational model is, in set theory and formal logic. As I’ve already suggested, those other “models” also fail,

much of the time, to make a clear separation between issues that truly are model issues and ones that are better

regarded as implementation matters. Again, I’ll have more to say on this topic in the next section.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

22

“Go Faster!”

And one further point: Although TR is an implementation technology, and thus deinitely at a lower level of

abstraction than the relational model, it’s important to understand that it can still, like the relational model,

be regarded as abstract to a degree (as indeed the very term “TR model” implies). In particular, it resembles

the relational model in that it can be physically implemented in a variety of diferent ways. See Chapter 3 and

several subsequent chapters for further discussion of this possibility.

•	 In my very irm opinion, the relational model is the right and proper foundation on which to build sound

solutions to a variety of newer data management problems. Examples of such newer problems include user-

deined data type support [40], subtyping and type inheritance support [41], and temporal data support [42].

hus, if TR is a good basis for implementing the relational model, it follows that it should be a good basis

for implementing solutions to those newer problems, too.

Actually, there’s quite a lot more to be said in connection with this business of using the relational model as a vehicle for

explaining TR ideas. First of all, please note that I do mean the relational model, not SQL. SQL and the relational model

aren’t the same thing! Indeed, considered as a concrete realization of the abstract relational model, SQL is very seriously

lawed. his isn’t the place to go into details on this particular issue; suice it to say that the SQL language sufers from far

too many sins, of both omission and commission, for it ever to be honestly labeled “truly relational.” (For more speciics,

see references [15-17], [19], [31], and [39], among others.) As a consequence, SQL is not at all suitable as a foundation

for explaining TR ideas (or numerous other ideas, come to that), which is why I don’t want to use it for that purpose in

this book.

Another problem with SQL, possibly less serious but still signiicant, has to do with terminology. SQL terms are oten quite

actively misleading—a fact that again makes SQL unsuitable as a basis for explaining TR and other ideas. However, I will

at least try to relate TR concepts and facilities to SQL constructs and terms, and I’ll show examples in SQL, whenever it

seems to me to make sense to do so.

In connection with the foregoing, I should add that I’ll be basing all of my SQL examples on the oicial SQL standard [53].

A detailed tutorial on that standard (1992 version) is given in reference [39], while a brief overview of the extensions that

were added to form the current (1999) version can be found in reference [47]. As you might know, however, no DBMS on

the market fully supports even the 1992 version of the oicial standard—in fact, no DBMS could fully support it, owing to

the many contradictions and inconsistencies it contains (see Appendix D of reference [39])—and so the examples might

not always work exactly as advertised on your own favorite SQL product. Caveat lector.

While I’m on the subject of the SQL standard, by the way, let me add that the oicial standard pronunciation of the name

“SQL” is “ess-cue-ell,” though you’ll oten hear it pronounced “sequel.” In this book, I’ll favor the oicial pronunciation,

thereby talking in terms of, for example, an SQL example instead of a SQL example.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

23

“Go Faster!”

Back to TR. Yet another important reason for explaining TR in terms of its usefulness for implementing the relational

model speciically is that TR ofers the possibility of building a DBMS product that truly is relational—something that,

precisely because of the SQL shortcomings mentioned above (and contrary to popular belief, perhaps), has never yet

been done. In other words, the potential beneits of the relational model, though well known and paid much lip service

to, have never been fully realized (despite the dominance of so-called “relational” DBMSs in the marketplace), because

the relational model has never been properly implemented. Now, however, we have the chance to do it right—and I very

much hope that someone will be bold enough to take up this particular challenge as soon as possible.

Following on from the previous point, let me focus for a moment on one very signiicant “potential beneit of the relational

model”: data availability and accessibility. It was always a dream of relational advocates that end-users should be able to

query and even update the database directly, without having to go through the potential bottleneck of the IT department

(IT = information technology). Ater all, the data in the database really does belong to those end-users, not to the IT

department. But this goal was never properly achieved, because of performance concerns: Database administrators

were worried—with good reason—that it would be all too easy for an end-user to issue a request that would bring the

system to its knees (“the query that dims the lights”). hus, all kinds of barriers had to be put in place to prevent the real

users from getting direct access to their own data: security controls, time-of-day lockouts, performance monitors, query

governors, and other mechanisms. (And all of those mechanisms in turn required further administration of their own,

of course, making the database administrator’s job still harder.) But if performance isn’t a problem—that is, if the claims

regarding TR performance are indeed valid—then those mechanisms shouldn’t be necessary, and we should be able, at

last, to achieve the data availability and accessibility goal.

 .

http://bookboon.com/
http://bookboon.com/count/advert/7e44064c-b968-4b1f-947b-a2af00d9019c

Download free eBooks at bookboon.com

Go Faster!

24

“Go Faster!”

And one last point: Despite the foregoing criticisms of today’s SQL products, another potential application for TR technology

arises precisely in connection with those products. To be more speciic, it should be possible, at least in principle, to replace

the backend code in such a product by code that uses TR technology instead. he user interface—namely, SQL—to the

system would remain unchanged; the only change the user would see would be that the system would now run much faster

than before. (he database administrator would see a change too, in that the administration job would now be much easier.)

1.3 Model vs. Implementation

Note: his section is based on material that originally appeared in reference [34], pages 33-35, copyright (c) 2000 Addison

Wesley Longman Inc. he material is reused here by permission of Pearson Education Inc.

Before I go any further, I need to say a little more about the notion of models—more precisely, data models—in general.

I also need to say more about the diference between such models and their implementation (what reference [40] calls

one of the great logical diferences1) in particular. And I need to head of at the pass a certain confusion that might

otherwise get in the way of understanding. he fact is, the term data model is, very unfortunately, used in the database

community with two quite diferent meanings, and we need to be clear as to which of those two meanings is intended

in any particular context.

he irst meaning is the one we have in mind when we talk about, for example, the relational model in particular. It can

be deined as follows:

Data model (irst sense): An abstract, self-contained, logical deinition of the objects, operators, and so forth, that

together make up the abstract machine with which users interact. he objects allow us to model the structure

of data. he operators allow us to model its behavior.

Please note, incidentally, that I’m using the term objects here in its generic sense, not in the special rather loaded sense

in which it’s used in the world of “object orientation” and “the object model” [3,4].

And then—very important!—we can usefully go on to distinguish the notion of a data model as just deined from the

associated notion of an implementation, which can be deined as follows:

Implementation: he physical realization on a real machine of the components of the abstract machine that

together constitute the data model in question.

For example, consider the relational model. he concept relation itself is, naturally, part of that model: Users have to know

what relations are, they have to know they’re made up of tuples and attributes,2 they have to know what they mean (that is,

how to interpret them), and so on. All that is part of the model. But they don’t have to know how relations are physically

stored inside the system, they don’t have to know how individual data values are physically encoded, they don’t have to know

what indexes or other physical access paths exist, and so on; all that is part of the implementation, not part of the model.

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

25

“Go Faster!”

Or consider the concept join. he join operator is part of the relational model: Users have to know what a join is, they

have to know how to invoke a join, they have to know what the input and output relations look like, and so on. Again, all

that is part of the model. But users don’t have to know how joins are physically implemented—they don’t have to know

what expression transformations take place under the covers, they don’t have to know what indexes or other physical

access paths are used, they don’t have to know what physical I/O operations are executed,3 and so on; all that is part of

the implementation, not part of the model.

In a nutshell, therefore: he model, in the irst sense of the term, is what the user has to know; the implementation is

what the user doesn’t have to know.

(Just to elaborate for a moment: Of course, I don’t mean that users aren’t allowed to know about the implementation.

hey might indeed know something about it; they might possibly even use the model better if they do; but, to repeat,

they don’t have to know about it.)

Now let’s turn to the second meaning of the term data model, which can be deined as follows:

Data model (second sense): A model of the persistent data of some particular enterprise.

Examples might include a model of the persistent data for some bank, or some hospital, or some government department.

By the way, there’s a nice analogy here that I think can help clarify the relationship between the two meanings of the term:

•	 A data model in the irst sense is like a programming language, whose constructs can be used to solve many

speciic problems, but in and of themselves have no direct connection with any such speciic problem.

•	 A data model in the second sense is like a speciic program written in that language—it uses the facilities

provided by the model, in the irst sense of that term, to solve some speciic problem.

Having now, I hope, made clear the distinction between the two meanings, I can now be explicit and say that throughout

the rest of this book, I’ll be using the term data model in its irst (“abstract machine”) sense. What’s more, I’ll usually

abbreviate the term data model to just model, unqualiied; that is, I’ll take the term model, unqualiied, to mean a data

model speciically (barring explicit statements to the contrary, of course).

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

26

“Go Faster!”

1.4 So How is it Done?

Back now to TR speciically. What then is the crucial diference between the TR approach and previous approaches to

implementing the relational model? In a nutshell, it’s this:

•	 Previous approaches have typically failed to recognize (or at least to act on) the clean separation between

model and implementation that the relational model makes possible. In those systems, what the user sees

and what’s stored internally are, typically, very similar to one another; typically, there’s a simple one-to-one

correspondence between base relations as seen by the user and iles as stored internally,4 and a simple one-

to-one correspondence between the tuples and attributes in such relations and the records and ields in such

stored iles as well (see Fig. 1.1). In other words, what’s physically stored is efectively just a direct image of

what the user logically sees.

Fig. 1.1: Direct-image implementation

www.mastersopenday.nl

Visit us and ind out why we are the best!

Master’s Open Day: 22 February 2014

Join the best at

the Maastricht University

School of Business and

Economics!

Top master’s programmes

•	 	33rd	place	Financial	Times	worldwide	ranking:	MSc	
International	Business

•	 1st	place:	MSc	International	Business
•	 1st	place:	MSc	Financial	Economics
•	 2nd	place:	MSc	Management	of	Learning
•	 2nd	place:	MSc	Economics
•	 	2nd	place:	MSc	Econometrics	and	Operations	Research
•	 	2nd	place:	MSc	Global	Supply	Chain	Management	and	
Change

Sources: Keuzegids Master ranking 2013; Elsevier ‘Beste Studies’ ranking 2012;

Financial Times Global Masters in Management ranking 2012

Maastricht

University is

the best specialist

university in the

Netherlands

(Elsevier)

http://bookboon.com/
http://bookboon.com/count/advert/f7bfcf34-764f-4096-b68c-a27c00b0a12f

Download free eBooks at bookboon.com

Go Faster!

27

“Go Faster!”

But that direct-image style of implementation has many undesirable consequences. One of the most important

is that the tuples of the relation in question are efectively kept in just one physical sequence (that is, one “stored

sort order”—see Fig. 1.1 again), and certain auxiliary structures, typically indexes, therefore have to be built and

maintained in order to provide access to those tuples in any other sequence. hose auxiliary structures in turn

lead to numerous further problems, including among other things stored data redundancy, additional storage

space requirements, DBMS implementation complexity, physical and logical database design complications,

and query and update ineiciencies and overheads. I’ll elaborate on these matters in Chapter 2.

•	 In the TR approach, by contrast, what’s physically stored is very far from being a direct image of what the

user logically sees. Instead, the relations and tuples seen by the user are transformed into internal structures

that eliminate virtually all stored data redundancy and provide many stored sort orders simultaneously.

Furthermore, the transformation is done without incurring large overheads in either space or time: he

transform process is rapid in both directions, and the internal structures occupy a fraction of the storage

space—a igure of 20 percent is quite typical—that would be needed for the data if it were kept in raw

direct-image form. (Observe, therefore, that TR is an improvement over previous approaches in terms of

both space and time: Faster execution times aren’t achieved at the cost of additional storage space—quite the

opposite, in fact.)

And now, perhaps a little belatedly, I can explain what the term “transrelational” means. he usual meaning of “trans” is

across, beyond, or through. But the “trans” in “transrelational” doesn’t stand for any of these; rather, it stands for transform

or transformed, and it refers to the fact that, in TR, data as seen by the user—in other words, relational data—is transformed

into very diferent internal representations, representations that are much more suitable for internal processing purposes.

hus, TR certainly doesn’t go “beyond” the relational model in the sense that it adds new logical data structures and

operators to that model; rather, it goes “beyond” that model in that it introduces constructs that are explicitly oriented toward

eicient implementation: constructs, in other words, that are beyond the purview of the relational model by deinition.

Precisely because TR does transform the data as seen by the user instead of storing it in direct-image form, from time to

time I’ll talk in what follows in terms of “transform” technology explicitly, thereby highlighting the fundamental distinction

between TR and the traditional direct-image approach. In Parts II and III of this book, I’ll explain the TR transform

process in detail; then, in Part IV, I’ll step back from that level of detail and consider the fundamental signiicance of the

transform idea.

Now, it’s obviously impossible to be very speciic with respect to the advantages of transform technology at such an early

stage in the book. However, let me just say that I see a fruitful analogy with logarithms.5 As we all know, logarithms allow

what would otherwise be complicated, tedious, and time-consuming numeric problems to be solved by transforming them

into vastly simpler but (in a sense) equivalent problems and solving those simpler problems instead. Well, it’s my claim

that—as I hope to show in the body of the book—TR technology does the same kind of thing for data management problems.

Reference [63] summarizes the distinction between TR and previous approaches (or in other words the transform vs.

direct-image distinction) as follows:

http://bookboon.com/

Download free eBooks at bookboon.com

Go Faster!

28

“Go Faster!”

Rather than [achieving] orderedness through increasing redundancy (that is, superimposing an ordered data

representation on top of the original unordered representation of the same data), the present invention achieves

orderedness through eliminating redundancy on a fundamental level.

—from the Initial Patent

In what follows, we’ll see in detail exactly how these ideas are realized in practice.

1.5 Structure of the Book

he book overall is divided into four parts, plus two appendixes. A sketch of the contents follows.

Part I

Part I consists of three chapters. Following this initial chapter, Chapter 2 takes a look at the historical context; in particular,

it explains the concept of direct-image implementation in more detail, and it discusses some of the problems that arise

with such implementations. Chapter 3 then describes a conceptual framework, based on three levels of abstraction, that

serves as a basis for explaining TR ideas in detail. hat framework is assumed throughout the rest of the book.

Part II

Part II (seven chapters) describes the TR model. Chapters 4 and 5 in a sense form the heart of the book; they explain

the two fundamental constructs of the TR model, the Field Values Table and the Record Reconstruction Table, very

carefully and in considerable detail. Everything that follows builds on the ideas of these two chapters, and I recommend

that you read them both as carefully as you can. In particular, they both include a number of embedded exercises, and

I suggest very strongly that you attempt all of them. Working through those exercises will give you a good feel for how

the fundamental TR algorithms really work—a much better feel than you can possibly get from simply reading the text.

Next, Chapter 6 addresses the issue of updates,6 a topic that Chapters 4 and 5 scarcely consider at all (deliberately, of

course). Chapters 7-9 then go on to discuss some major reinements to the basic model as described in Chapters 4, 5, and

6. Strictly speaking, the reinements in question are indeed just that, reinements, and therefore optional, but it seems to

me that most if not all of them would surely be included in any commercial implementation of the TR model. What’s

more, several of the more signiicant and interesting beneits of the TR model are direct consequences of those reinements.

hese chapters also all include embedded exercises, and again I recommend that you take those exercises seriously.

he last chapter in Part II, Chapter 10, discusses the use of the TR model in implementing the operators of the relational

model (restrict, project, join, and so forth), showing how radically diferent those implementations are from what we’re

used to seeing in traditional direct-image systems.

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Go Faster!

29

“Go Faster!”

Part III

Divide-and-conquer is always a good pedagogical approach, and this book makes heavy use of it. In particular, Part II

assumes (for the most part, at any rate) that the database is in main memory, and it ignores the complications that are

introduced by the fact that real databases are usually too big to it into memory.7 Part III then goes on to consider what

happens when we drop this assumption. Chapter 11 describes the problem in general terms; Chapters 12-14 then go on

to discuss three highly TR-speciic solutions to that general problem.

By the way, the point is worth making that, the foregoing paragraph notwithstanding, main-memory databases are

becoming increasingly important in practice, and commercial products are becoming available that are optimized for such

databases. he TR model is an excellent basis on which to build such products, as you’d probably expect.

Part IV

Part IV consists of a single wrap-up chapter (Chapter 15); it provides a summary and analysis of what’s been covered in

earlier chapters, including in particular a summary of the beneits the TR model provides, and it ofers a brief look at

what the future might hold.

 -
 ©

 P
h
o
to

n
o
n
s
to

p

> Apply now

REDEFINE YOUR FUTURE฀

AXA GLOBAL GRADUATE฀
PROGRAM 2015฀

http://bookboon.com/
http://bookboon.com/count/advert/030d71a6-2f39-462d-8d1e-a41900d437e0

Download free eBooks at bookboon.com

Go Faster!

30

“Go Faster!”

Appendixes

Finally, there are two appendixes: one collecting together all of the exercises from Part II (Appendix A), and one giving

a consolidated set of references for the entire book (Appendix B). Appendix A in particular is provided as a convenient

place where you might actually want to work the exercises; not only does it contain the exercise statements as such, it

also repeats some of the necessary background material, and it should thus save you from having to do a lot of tedious

page lipping and cross-referencing while you’re trying to work out your answers.

Endnotes

1. his useful term comes from Wittgenstein’s dictum that All logical diferences are big diferences. For further

discussion, see reference [40].

2. In case you’re not familiar with these terms (or the term relation itself, come to that, or other related terms),

they’ll all be explained in Chapter 2. Here just let me note that tuple is usually pronounced to rhyme with

“couple.”

3. I/O = input/output. I’m assuming here that the data is physically stored on secondary storage media

(magnetic disks, etc.).

4. I’ll explain the diference between base relations and other kinds in Chapter 2. In the interests of accuracy, I

should also mention that the correspondence between base relations and stored iles isn’t always one-to-one

as I’m claiming here—some products allow several base relations to share the same stored ile, and some

allow a single base relation to span several stored iles. However, these facts don’t signiicantly afect the

bigger picture, and ignoring them (as I plan to do from this point forward) doesn’t materially afect any of

the arguments I’m going to be making.

5. hanks to Steve Tarin for suggesting this analogy.

6. Here and throughout this book, I follow convention in using the term update to refer to the INSERT,

DELETE, and UPDATE operators considered generically. If I need to refer to the UPDATE operator

speciically, I’ll set it in all caps, as here.

7. Here and throughout this book, I follow convention in using the unqualiied term memory to mean main

memory speciically.

http://bookboon.com/

